
r

ANNUAL

PROGRESS REPORT

RESEARCH

00 ON

"AUTOMATIC CLASSIFICATION. INDEXING

AND EXTRACTING

F. T. Baker M. Jones

G. L. Johnson J. H. Williams

CONTRACT NONR 4456(O0)

Submitted to

Information Systems Branch
Office of Naval Research
Department of the Navy

Washington, D. C., 20360

Prepared by

Federal Systems Division
International Business Machines Corporation

Gaithersburg, Maryland 20760

I

i

UN CLASSIFIED

Secuzuy Claselifcetion
DOCUMENT CON4TROL DATA. R&D

t. ORIGINATING4 ACTIVITY (C.,upet. author,) 20 RKPOR- $1CURITY C LASSIFICA?.ON

Federal Systems Division UNCLASSIFIED
International Business Machines Corp. lb nu

Gaithersburg, Maryland 20760
3. REPORT TITLE

RESEARCH ON AUTOMATIC CLASSIFICATION, INDEXING AND

14.DESCRIPTIVE NOTES (Tjsp e re fport and Inclusive data&)

Annual Progress Report
S. AUTHOR(S) (Losame, Ornel nts liu.. Irtell.)

Baker, F. T., Johnson, G. L., Jones, M., Williams, J. H.

G. REPORT OATE 70. TOTAL NO. OF PASOa mawN. P Es

April 1966 42
$41 CONTRACT OR4 GRANT NO. 341. CilIIINATORS4 REPORT NUMSCR(S)

NONR 44 56(00)
h, PROj9C T NO-

ine.OTN~S (nom0N., nuber. ffist as es hos~,eo 1d

d.

10. A VAIL ASILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.'
Other qualified users shall request: copies of this rkport from the
originator._________________ _____

I I. SUPPLUMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. AISTRACT In order to contribute to the success of several studies for automatic
classification, indexing and extracting currently in progress, as well as to furthe
our theoretical and practical understanding of textual itemn distributions, this yeai 'a
funds under Contract No. NONR 4456(00) have been applied to the development ofL
frequency program capable of supplying these types of information. The progra
planned for the System/360, will provide numerous user options covering the for 'at
of the input text, the definition of a countable item (e. g. , a "word" may be specif d
as any string of characters between delimiters such as comma, space, period. o
any combination thereof), the definition of a textual unit over which frequencies a te
to be subtotaled (e. g. , sentence, paragraph, or document), the types of data too Ib
output, and the machine configuration to be used. Also, facility will be providedI for the incorporation of user-supplied routines to perform special functions such
as word pair generation, suffix normalization, etc.

In addition to the determination of program requirements and overall program
design, progress ha. been made on the design of the Dictionary Build module Ci th,
frequency program. The main purpose of the program is the provision of an outj ut
containing an ordered list of the items, their frequencies, and any special tags
desired by the user. For the processing ,'I large input texts, efficient utilization
of storage devices by rapid dictionary search and storage techniques were conaidi red
essential to the complete program. The Dictionary Build module is therefore a
critical one and has received special attention.

Contained in this report are descriptions of the requi.!ements generated for th
System/360 Frequency Program, status report on program design and documenta. 'on

D D JAN14 14,73___ ______

Security CIauulficatlo ______

L --

UNCLASSIFIED

security ClaIM& Csta _____

It. May 1001os UIMK A LINiK a LINK C k

Frequency Program
OI T M IF W WLC T

Textual Item Counting
Pro~gram Design
Dictionary Processing

INSTRUCTIONS
1. ORIGINATING ACTIVITY. Enter the none and eddress imposed by security classificsaion. using standard statements
of the coutractor, subcontractor. grantee, Department of Do. such as:
(ena. activity or other organization (corporate author) issuing (1) "Quaififed requestes: mey obtain copies of this
the reot report from DDC.
2&. REPORT SECUUTY CLASSIFICATION: Rater the over, (2) "Foreign announcement and dissemination of thisel security classification of tde report. Indicate whether
"Retice Date" is inclued. UMoing Is to be inat or report by DOC Is not authorized."
anee with appropriate security regvlatloos. (3) "U. &. Government agencies may obtain copies of
26GOP #uoilcdwpda saecfe nDDD. this report directly from DDC. Other qualified DDC
active 5200. 10 mad Arnmd Force" Industriel smamL. Enterusrshlreettiog
tin group numaber. Also. whnen ewlcabla, show that optional
markings bave bee n usead for Group 3 and Group 4 -as a uthor. (4) "U.S& military agence~s may obtain copies of this

is&&reprt drecly fom DC.Other qualified niers
3. REPORT TITLIL- Enter the complet* report tite in all shall requeet through
capital letters. Titles In all case* should be uclaselfled.
If a =Poanlnul title cannot be selected without clausifice.
lion, show title clasaification in all capitals in parenthesis (S) "All distribution Of this report i3 con1trOlled QU41.
Immediately following the title. ifiad DDC users shall request through
4. DU1CRWTIVE NOTESi Uf apopriete, enter the type of________________

MeOrt e~g., interim, progress, uamray, anamial, or 1955.1 If the report has been furnished to the Office of TechnicalGive the incluisive dates when a epeciic reporting period is Services, Department of Commerce, for sale to the public, indi-
covered.cote this fact end enter the price. it known.

S. AUTNOR(S)c Enter the. naes(s) of author(s) as shown on IL SUPPLEMENTARY NOTES Use for additional exIsueamor In the report, Euder lost nam*, first nome, middle initiaL tory notes.
It mliftary, show rash sad breach of service, The nameo of
the principal aiuthor isean absolute minimum requirement. 12. SPONSORIN4G MILITARY ACITIVIY: greet the t~fte of

6 RORTDAT.~ ate th dae o th reortas ay, the departmental project offic, or laboratorVf eponsoriagl (Pa-
REP~ORTDM Rotortedt*o h rep~e o rdt as day riniffr he eerhand developmen. ncludeeaddess.

fonlow Y~r port mdoiutha spece ia reuied ah n cdaftuaio a"*t&sal
onU rport. ue daeO ulcto,1.aMttached.anastatgiiga refadfata

76. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ umr ofIE tEZZC ae h otlnme fI hige douenitb thdiatithe obstractrofoclssieved report7&wucscie TOTA N the~ t'OF AMktotlpg on be mayaclsoaified EIacwhargap of the abstracftshei t enda with
sho. followT norma pGip o prceues. If 16 apr nrite, ether pont Itadicatlona ofpte* misar s Leurt conteinuati.on shtshelin

the applicable member of tbs contrae t grpant under which formation In the paragraph. represented as (Ta). (s). fC). or (U).
the opeport writto There is no limltatien en the length of the abstract. How-
S6, br. 6 "i PROJECT NUMIb Rotr the appropriete ever, the suggested length Is from 150 to 225 words.
fhitetry dapeamneft ideatgication. much as project number,
sekpvojec n~ber, systm numbers. task muagpor, etc. * 14. KEY WORDS: Key words are technically meaningful termsor short phrases that charecterine a report @and may be used as
ts. ORIOMA700RS REPORT WUWZ(0 Eawe the Oft-. Index enatries for cataloging the report. Mey words suet be
*Wialrpes at br by wMot the dmoumeft will be identified selected @o that no security classification is required. Ideat-
end controlled by the oelginastlg motivity. This nmbher "Bst flats, such as equipment model designation. trade name, military
be satique to thia repeat. project codo nome, geographic location, may be used as key
96. OTIU RWPO*r NUMEM)s If the report hasmeen words but will be followed by an indication of tecisnical con-
aseigned my other r"or -- 1 (*fiber by the Originator twit. The asaignment of links, rmles. and weights is Optional.
of 1V doe apoaaorl aleo er4f twos enmbr(a).
10. "AVLAmZLITY/L321TATION InTCM Knew my Hrn
Itatioes an further diaeeuklnstion of the report, other thn=

Security Clasalficatioa

TABLE OF CONTENTS

Section Page

INTRODUCTION 1

2 PROGRAM REQUIREMENTS 4

2.0 Introduction 4

2. 1 Machine Configuration 4

2. Z Input Specifications 5

2. 3 It,!m Definition 5

2.4 Interval Specification 6

2. 5 Special Tagging 6

2. 6 Output Requirements 6

2. 6. 1 Concordance 7

2. 6.2 Summary Frequency Data 7

2.6. 3 Detailed Frequency Data 7

2. 6.4 Growth Rate Data 8

2. 7 Programming 8

2. 8 Operation 8

3 PROGRAM DESIGN 9

3.0 Introduction 9

3. 1 Modular Approach 9

3.2 Control Program 10

3. 3 Basic Modules 11
3. 3. 1 Input Module 11

3. 3. z Item Identification Module 11

K- _ _

CONTENTS (cont'd.)

Section Page

3 3. 3. 3 Dictionary Build Module 12

3. 3.4 Merge Module 12

3. 3. 5 Detailed Output Module 13

3.4 Program - Provided Option Modules 13

3.4. 1 Concordance Module 13

3.4. 2 Special Item Check Module 14

3.4. 3 Growth Rate Module 14

3.4.4 Summary Output Module 15

3. 5 User - Provided Optional Modules 15

3.6 Example s 16

3. 6. 1 Article Separation & Analysis 16

3. 6. 2 Multi-Level Classification 17

3. 6. 3 Trigram & Tetragram Analysis 17

4 DICTIONARY PROCESSING 23

4.0 Introduction 23

4.1 Overall Data Flow 24

4. 1. 1 Overall Sort/Merge 24

4. 1.2 Input Iteration 25

4. 1.3 Partial Dictionary Generation 26

4.1.4 Analysis 27

4. 2 Dictionary Construction Techniques 27

4.2. 1 Straight Chain Method 28

4. Z. 2 Binary Search Method 31

4. 2.3 Directory-Chain Method 33

5 GLOSSARY 41

LIST OF ILLUSTRATIONS

Figure page

3-1 Article Separation and Analysis 19

3-2 Multi-Level Classification 20

3-3 Trigram and Tetragram Analysis 21

3-4 Modules by Type 22

4-1 Chaining Tables 30

4-2 Binary Search 32

•mmm,-,------I

Section 1

INTRODUCTION

Language analysis studies are necessary prerequisites to

successful establishment and operation of language data processing

systems. For example, it is usually necessary to determine the

characteristics of input text and queries prior to the development

of techniques for document processing. Language analysis studies

can provide information on syntax, semantics, word counts, patterns,

associations, etc. , which is valuable in the development of techniques

for translation, classification, indexing, abstracting, correction,

structuring, prediction, etc.

In support of these language analysis studies, particularly

in the areas of automatic classification, indexing and extracting, IBM

has been engaged in research on the statistical and morphological

behavior of character strings or items in narrative text. The pre-

sent IBM technique for automatic document classification requires word

counts by individual document and by document category. Work on

word morphology currently being performed uses counts of syllables,

n-grams (items n characters in length) and positional distribution of

individual characters. Morphological analysis of words provides

statistics necessary for automatic methods of hyphenation-justification,

index term selection, and textual error correction. Automatic extracting

methods are partially based upon information from word counts by sen-

tence, paragraph, and document. Finally, the statistics generated by

processing samples of input text and queries can yield the values of

several document system design parameters; a few of these are:

I r a

expected dictionary size and growth rate, magnitude of the input

error problem, expected document length and frequency of special

types of words such as proper nouns.

In order to contribute to the suc ess of these several studies

currently in progress, as well as to further our theoretical and

practical understanding of textual item distributions, this year's

funds under Contract No. NONR 4456(00) have been applied to the

development of a frequency program capable of supplying these types

of information. The program planned for the System/360, will provide

numerous user options covering the format of the input text, the defini-

tion of a countable item (e. g., a "word" may be specified as any string

of characters between delimiters such as comma, space, period, or

any combination thereof), the definition of a textual unit over which

frequencies are to be subtotaled (e.g. , sentence, paragraph, or document),

the types of data to be output, and the machine configuration to be used.

Also, facility will be provided for the incorporation of user-supplied

routines to perform special functions such as word pair generation,

suffix normalization, etc.

In addition to the determination of program requirements and

overall program design, progress has been made on the design of the

Dictionary Build module of the frequency program. The main purpose

of the program is the provision of an output containing an ordered list of

the items, their frequencies, and any special tags desired by the user.

For the processing of large input texts, efficient utilization of storage

devices by rapid dictionary search and storage techniques were considered

essential to the complete program. The Dictionary Build module is there-

fore. a critical one and has received special attention.

Contained in this report are descriptions of the requirements

generated for the System/360 Frequency Program, status report on

program design and documentation of the dictionary construction methods

which have been studied for possible use. Evaluation of the dictionary con-

struction methods is continuing, and efficiency comparisons in this area

~ I

will be obtained through experimental calculations or actual programmed

testing. Design of other program modules will continue, and program-

ming will begin upon completion of the design work.

3

Section 2

PROGRAM REQUIREMENTS

2.0 INTRODUCTION

Before commencing the design of a general frequency pro-

gram, a study of the capabilities required and options desired was

made. A general frequency program for the IBM 7090 has been in

use for four years. Over this period it has been rewritten once and

modified several times to adapt it to an ever-Increasing number of

applications. In addition, other programs in use which perform

similar functions were studied. The capabilities and desirable

features described below were selected as a : esult of this study.

2. 1 MACHINE CONFIGURATION

The program should be planned for the IBM System/360, which

comprises a compatible set of central processors and auxiliary units.

The program should be written to be operable on one of the smaller

models of System/360 and should take advantage of extra facilities

when run on larger models.

The general organization of a frequency program requires the

repetitive building of lists of items and frequency data followed by merg-

ing groups of these lists. A reasonable amount of core storage must be

available for list generation and merging purposes. Also, for list

storage and merging purposes, direct access auxiliary storage is highly

desirable. Hence, the minimum configuration for the program will be a

4

i!I

II
System/360 with sufficient core storage, direct access storage units

such as the IBM 2311, IBM 2314 or IBM 2302 disk storages or the IBM

2321 data cell dri'e for list storage and merging. Direct access or

serial access storage devices such as the IBM 2400 series tape drives will

be used to handle input and output requiremerts. The exact amounts of

storage and type and number of devices required will be determined in

the detailed program design process.

Z. Z INPUT SPECIFICATIONS

Inputs to the program can consist of narrative text or a variety

of types of formatted records. The program should be capable of read-

ing input in serial fashion from either serial access or direct access

devices. It shoid allow for variable as well as fixed length records up

to a reasonable maximukm length. The standard character code should

be EBCDIC. However, the program should allow the user to convert

to or from non-standard character codes.

2. 3 ITEM DEFINITION

The program should be capable of providing data on the frequency

of a number of types of items. Once the items have been identified in

the input, this process is relatively straightforward an common to all

types. However, the item identification process can vary widely accord-

ing to the form of the input and the outputs desired. The most frequent

use of the program is expected to be on textual data with word frequencies

desired. Hence the program should provide a word identification routine

to operate on narrative text. The specification of "words": should be

delermined by the user at the time he sets up a run and should allow for

a variety of word delimiting characters (e. g. , blank, comma, period,

"iyphen, single quote) and rules for applying them. The program should

also allow for provision by the user of other types of item identification

j5

routines to be incorporated ir, place of the standard routine. Such

routines could perform word pair definition, individual character

breakup, word encoding, matching of syllables against a dictionary

or other desired item definition functions.

2.4 INTERVAL SPECIFICATION

It should be possible to specify several textual intervals at

whi zh frequencies should be tallied. For example, one may desire

word frequencies by sentence, paragraph and document from tht same

set of input text. The variety of possible input formats makes it imprac-

tical to provide standard modules to accomplish interval determination.

The standard program should therefore provide for multiple intervals of

tally, and the user should provide a routine for interval determination if

he desires this function. If no such routine is provided, the program

should tally frequencies over the entire input.

2. 5 SPECIAL TAGGING

It is desirable in some cases to allow tagging of various types of

items. One may wish to separate numeric items from alphanumeric or

alphabetic ones, identify special items in some way, or tag the samý item

in different ways according to its context. The program should provide

for a user-inserted special routine to perform any tagging desired and

should take such tags into account in building and merging lists of items

and their frequencies.

2.6 OUTPUT REQUIREMENTS

Many types of outputs have been found desirable from frequency

programs. These generally fall into four categories, each of which is

discussed separately below.

6 1

Z. 6. 1 Concordance

For some purposes it is necessary to retain position infor -

mation about items. This can then be sorted or processed in a variety

of ways to get data on the way these items are used in context. The

program should provide an optional concordance output containing, for

each identified item, or for a pre-specified list of items:

a. Item

b. User-supplied tags

c. Interval identification

d. Sequential position within interval

2. 6. 2 Summary Frequenc Data

A number of summary outputs are useful in giving an overall

view of the data. The program should provide, at each interval specified:

a. Item type-token distribution and total number of types

and tokens

b. Distribution of item types by initial character

c. Distribution of item tokens by initial character

d. Distribution of item types by string length

e. Distribution of item tokens by string length

2. 6. 3 Detailed Frequency Data

The desired basic output of the program is detailed information

on individual items and their frequencies. This output might be sorted in

a variety of ways by standard sort programs to group items by length,

frequency, tags, etc. The standard program output should be:

a. Item

b. Tags

c. Frequency

d. Interval and sequence number of first occurrence

7

The standard output sort should be alphabetic by item within tags.

2, 6,4 Growth Rate Data

In addition to the detailed data, information on the growth rate of

the number of items in a vocabulary is frequently useful. This may be

desired either at fixed intervals, such as every 5000 items, or at the

user-specified textual intervals. The program should therefore provide

an optional output of the number of ite,,,. encountered either in the pre-

specified textual intervals or at fixed intervals.

2.7 PROGRAMMING

In order to simplify modification and allow easy incorporation of

user-provided routines, the basic program should be modular and should

be programmed in a higher-level language. The use of PL/I should be

considered, since it is an advanced language and appears to provide the

necessary features.

2.8 OPERATION

The program should operate under Operating System/360. All

input and output should be performed by standard OS/360 routines. Since

the program may run for long periods when large amounts of input are

provided, an option to stop the program, save necessary parameters and

restart at a later time ahould be incorporated.

8

-~~~---

Section 3

PROGRAM DESIGN

3. 0 INTRODUCTION

This frequency program is required to provide frequency

data on a variety of types of items for many different purposes.

Since it is impractical to try to anticipate all the uses, data formats,

output requirements, etc., the design philosophy has been to pro-

vide a set of general-purpose program modules to perform a group

of basic functions associated with building a list of items and their

frequencies. The user can then supply any additional modules required for

special-purpose operations and unusual input-output formats. A control

program to select appropriate modules, assemble them into a working

package and initiate and monitor the run will also be provided. Sel-

ection of a variety of summary outputs formatted for printing will be

possible. Item frequency and concordance outputs will be provided

in a format suitable for sorting or processing either by standard

System/360 packages such as the Sort or Report Program Generator or

by special-purpose programs provided by the user.

3. 1 MODULAR APPROACH

Since the requirements for a given run may vary widely, the

program has been broken into modules performing specific functions.

Each module will have an initialization phase which sets up the module

prior to processing. Thus, once the user specifies his options the

module will adjust itself to operate efficiently in satisfying his require-
ments. The modules perform two types of functions, basic and optional-

5....•.,- •- ,__. •9

functions.

A basic module is one which performs a function that is nec-

essary to the building of a list of items and their frequencies from the

textual input. They include input, item identification, dictionary build-

ing, merging and output modules.

The optional modules are of two types, the first provided by the

frequency program, and the second provided by the user.

Program-provided optional modules are those which perform

functions that are independent of the particular data being processed.

The bulk of these consist of summarizing functions which can be sel-

ected to provide specific types of outputs.

The user must provide modules to perform functions which

depend on variations in the format of the input data or present special

processing or output requirements. An example of this type of function

is encoding of the words. Instead of programming one encoding algorithm

or even several algorithms which may not be applicable to this user's

problem, the user can insert his own algorithm with only a minimum

amount of knowledge about the entire frequency program. Provision

has been made to permit the user to program modules of this type and

insert them at the appropriate time.

A list of the modules of each type is given in Figure 3-4, and

descriptions of them are contained in Sections 3. 3, 3. 4, and 3. 5.

3.2 CONTROL PROGRAM

The modules are tied together through the control program, which

consists of two phases. Phase One is devoted to the processing of the
input parameters and the initialization of the modules to be used in the

operational phase. Phase Two checks the options and assembles the

operational program in the desired sequence; following the assembly, con-

trol is transferred to the operational program and the data processing

begun.

10

L __ •i

3K3 BASIC MODULES

This section describes the modules which will be provided to per-

form the five required basic functions. These are input, item identifi-

cation, dictionary building, merging and output of the detailed frequency

data.

3.3.1 Input Module

The function of the Input module is to read the data to be frequency

Lounted from the input medium. This data will be read "-ing the standard

System/360 data access methods, which will permit the module to remain

device -independent. The initialization phase of this module will accept

parameters describing the particular format of the data and will set up

buffers to hold the data. Output of this module will be one logical record.

3. 3, 2 Item Identification Module

The function of the Item Identification module is the analysis of

the input in order to identify the items to be counted. Every run of the

frequency program must have such a module; however the particular

module used will depend on the type of item the user wants counted.

A rery frequent use of the frequency program will be to provide

information on words occurring in narrative text. For this reason, a

standard Item Identification module is provided. Modules for other

types of item identification may be written either to operate on the out-

put of the standard Item Identification module (e. g. , for word pairs or

syllable identification) or to replace it completely (e. g., for individual

character identification).

The purpose of the standard Item Identfication module is to identify

individual words in the input stream. The module accepts a set of char-

acters which are legal characters for the word definition; that is, a word

must consist of letters, digits or certain special characters from the

11

legal set. It also accepts a list of characters which serve as delimiters;

together with a set of rules, these charactz.as indicate the end of a word,

The user may also define a list of characters which will cause the end

of a word if not followed by a nv.neric character.

As an example, consider the use of the comma (,) in text. If the

number 1, 071 appears, a user would wish it to be stored in the dictionary

as 1, 071. On the other hand, if the phrase "cats, dogs, and mice" appears,

the user would like the words "cats" and "dogs" to be entered into the

dictionary without the comma. This can be accomplished by specifying

the comma (j as a character to be ignored and the blank or space as

a delimiter character.

3. 3. 3 Dictionary Build Module

The Dictionary Build Module is the most critical module in

the system since it has the greatest effect on efficiency. Consequently,

methods of building dictionaries are being studied in greater detail,

and Section 4 of this report discusses some of these methods.

The Dictionary Build module will accept an item as defined by

Item Identification and/or user-supplied modules and search the diction-

ary for this item. Each item not found in the dictionary is inserted with

a frequency count of one, and each item already in the dictionary has its

frequency count augmented by one. When the interval over which the dic-

tionary is being built changes, or when new items can no longer be added

to the dictionary, the dictionary is placed on a disk in sorted order for

later use in the Merge module. Provision is made in the dictionary for-

mat for multiple intervals and for any user-supplied tags.

3.3.4 Merge Module

The output of sorted partial dictionaries make the function of the

Merge module quite simple. Merge will add the frequencies of duplicated

items and output the composite dictionary back onto the disk. Since the

. I

7- _ _

II

frequency program will allow the user to obtain outputs at any of the

intervals desired, this Merge module will be required to combine

dictionaries at the desired intervals for each of these outputs. For

example, suppose there are three text intervals, A, B and C (e. g.,

data base, category, document) where A is the highest interval with

units a,, a., ... ah and intervals B and C consist of units b,, b 2 , ... ,b

and c1 , c., ... , Cm respectively. The Merge module would first

combine all partial dictionaries for a b C, a b cZ, aib cm,

a b cIs a b 2 c, I.., albC, azbcl, ..b, ahbc. Informa-

tion would then be output for each aibjck, where i = I,Z,..., h;

j = 1,2, ... , n; k = 1,2, ... , in. The next Merge pass would merge

all the dictionaries for each a.b. prior to their output. In the final
IJ

Merge pass all dictionaries would be merged for the composite dic-

tionary at interval A.

3. 3. 5 Detailed Output M•.4odule

The Detailed Output module reads the appropriate dictionary

from disk and formats the items, their frequencies and any desired tags

for printing. This is tir module which provides the basic output in

alphabetic order and will be used at each of the intervals specified. The

method of output will be one of the standard System/360 methods which will

permit the module to be device-independent.

3.4 PROGRAM-PROVIDED OPTIONAL MODULES

This section describes those program-provided optional modules

which may be included in an operational program to perform special

functions or provide additional outputs.

3.4. 1 Concordance Module

The Concordance module provides a detailed record of the position

of every item identified by the program. It allows users to analyze the

13 -~ I

context of specified items, to note the location of certain items or to

provide the data required for a full-text index. This module will output the

item, any user-provided tags, the interval tag and the position of the item

within the interval. This output will be performed using one of the stand-

ard System/360 access methods so that it will be device-independent.

The user can then sort or otherwise process this data using other System/

360 programs such as the Sort or Report Program Generator.

3.4. 2 Special Item Check Module

The Special Item Check module permits the user to check an

item defined by an item identification module against a list of items

predetermined by the user. When an item on the list is found control

will be given to a module provided by the user. This facility is provided

for use in special tagging or interval analysis routines. For example,

the beginning or end of a document may be " ntified by a special item.

When an item of this type is encountered, t1e user can have control trans-

ferred to a module which changes an interval indicator so that succeeding

items passed along to the Dictionary Build module will be tagged as belong-

ing to a new interval.

3. 4. 3 Growth Rate Module

The Growth Rate module will keep a record of the unique items

added to the dictionary over intervals specified by the user. After all

input has been processed the growth information will be written onto an

output device using one of the standard access methods. Output of this

module can be used to determine the expected rate of additions to the

vocabulary of a document collection, to provide clues to the location of

error bursts in input data or to indicate when changes of subject have

occurred.

14 I

3. 4. 4 Summary Output Module

The Summary Output module will consist of the following

sub-modules: Token-Type, Frequency Distribution, Initial Char-

acter Distribution, Word Length Distribution. These sub-modules

will be used as requested to form the summary output desired at each

interval. The Token-Type sub-module lists the total number of tokens

and types encountered. The Frequency Distribution sub-module gives

the number of types which occurred with a frequency of one, the number

of types which occurred with a frequency of two, etc. Initial Character

Distribution gives the frequencies by initial character of both types and

tokens. Finally, the Length Distribution sub-module gives the frequencies

by item length for both types and tokens. The output is formatted for

printing and processed by one of the standard access methods of System/

360.

3.5 USER-PROVIDED OPTIONAL MODULES

User-provided modules will perform such functions as defining

input intervals, tagging items, and encoding which are specially depen-

dent on text content or format. For interval definition the user can

examine the items defined by an Item Identification module. The user

can then check this item to determine if it represents an interval identi-

fier instead of an item. If more information is needed he can call the

Input module which accesses the input data. The user can also tag items

as numeric, alphabetic, alphanumeric, or whatever he wants identified

in a particular manner. This tag can be placed either preceding or follow-

ing an item depending on how the user desires his output to be sorted. En-

coding can also be performed after an item has been defined. Since output

is in sorted order a user might want to encode for the concordance only.

In this case he could call the Concordance module from his encoding module

and let the Dictionary module store items without encoding.

15

I

3.6 EXAMPLES

This section will present three examples drawn from actual

experience for which several existing IBM 7090 frequency programs

and some special-purpose programs were required. It will show how

the System/360 program will be assembled and used to provide the data

required by each of these problems.

3. 6. 1 Article Separation and Analysis

This problem was presented in the course of studying a large

body of text from magazine articles for purposes af thesaurus develop-

ment and query analysis. Requirements were for word frequency data

both for total text and by individual articles, growth rate data keyed to

individual articles so that major vocabulary changes and error bursts

could easily be located, and summary information required to assist

in determining the best organization for the thesaurus.

The articles were contained on paper tape, one article per strip,

and were too numerous to be strip-fed into a reader. The strips were

therefore spliced into reels and converted to magnetic tape. However,

this destroyed the separation between articles, and a special program

had to be written to analyze the text, search for article breakpoints and

insert article marker strings, Two frequency programs were then run,

one to get data for the total text, and a second to get data for individual

articles.

The System/ 360 program could have handled this job with the

addition of a single user-supplied module. This module would be called

whenever a carriage return symbol was encountered by the Special String

Check module and would determine whether this was a normal single

carriage return or t' e beginning of a string of carriage returns which

signified the end of an article. In the latter case an interval indicator

would be changed so that the succeeding words would be identified as

part of a new article. The user would supply this module and by control

16I _

_ _ _ 94

cards request the control program to set up and execute the program

shown in. Figure 3-1.

3. 6. 2 Multi-Level Classification

This problem aroce during the development of a technique for

subject classification of documents into a hierarchic structure with several
levels. The technique requires data on word frequencies at each level

of the structure in order to generate classification parameters from a

document sample. Sample documeits are on cards with their identification

and classification punched in columns 73-80. The present solution is to

sort them by document within level and input them into a frequency pro-

gram which produces word frequency data for each document. A special
merge program is then used to provide information on the combined

word frequencies within categories at each level of the structure.

The System/360 program provides all the routines necessary to
perform this analysis with the exception of a module to check the

identification and classification and provide interval tags for each hier-

archic level. The user would supply this module and a set of control cards
to establish the program shown in Figure 3-2.

3. 6. 3 Trigram and Tetragram Analysis

In the course of some word morphology work oriented toward

automatic identification of proper nouns in teletype material without

type-case symbols, a set of trigram and tetragram frequencies from a

sample of proper nouns was desired. The solution was to run an existing

7090 word frequency program once to get word frequency data and then to

input this data to a modified version of the same program which performed

the gram identification function.

The System/360 program could perform the entire job in one pass
withtwo user-supplied modules. The first module would be an Item Identi-

17

r1

fication module which would extract only capitalized items, excluding

words which begin a sentence. These items would be processed by

the second user-supplied module which would repetitively form all its

constituent trigrams and tetragrams. These would be tagged as one

or the other and passed on to the Dictionary Build module, which in

this case would be set up to return to the user-supplied module until

the last gram had been added. The setup for this run is shown in

Figure 3-3.

I

18

If4 itCL

411
4) 14C

1414¼) X 1-

'.4

41)

41)

U

Ell 00

19

E-4

00 G

C: Z

00

'.44

.40

c bk

14-

00

4).

C4

0.L

0 1.4

4JI

P414

144 1

$410

0nC

E g-

Basic Modules

Input

Item Identification

Dictionary Build

Merge

Detailed Output

Program-Provided Optional Modules

Concordance

Special Item Check

Growth Rate

Summary Output

Token-Type

Frequency Distribution

Initial Character Distribution

Word Length Distribution
'I

Possible User-Provided Optional Modules

Pre-processing of the Data

Interval Definition

Encoding

Word Tagging

Special Action on Special Words

I

Figure 3-4

Modules by Type

za

F

Section 4

DICTIONARY PROCESSING

4.0 INTRODUCTION

Some of the most important decisions which must be made

in the course of the development of the frequency program are con-

cerned with the manner in which partial dictionaries are generated and

merged. In general, the number of item types in the input will be

larger than can be held at once in core storage. Counts must therefore

be made for separate segments of the input, and these paratial diction-

aries later must be merged to provide final counts for each of the de-

sired intervals. There are several basic approaches to organizing this

overall data flow, and the efficiency of the method chosen is critical

to overall program efficiency. Also, in the generation of the partial

dictionaries, there is a variety of ways to organize and use core storage.

The amount of time spent by the program on this task will be quite sub-

stantial, and here again a wise choice of method can pay dividends in

operating efficiency.

In these two areas, then, special study of the possible approaches

and their advantages and disadvantages is being made. The study of

dictionary generation methods is not yet complete, and the decision on

which of the several approaches to use will, as in the study of data flow

methods, be based on quantitative estimates of time derived from experi-

ence with large text samples and previous programs, as well as on the

simplicity of design and programming expected to be associated with each.

The remainder of this section describes the various approaches which are

23

being evaluated, both for the overall data flow and for the construction

of the individual partial dictionaries. It also outlines the evaluation per-

formed on data flow techniques to select the method to be used in the

program.

4.1 OVERALL DATA FLOW

The three different approaches to overall data flow which were

considered for this program are Overall Sort/Merge, Input Iteration

and Partial Dictionary Generation. These three methods and their variations

are described below.

4. 1. 1 Overall Sort/Merge

This is perhaps the simplest conceptual method to the organization

of the overall data flow. There are two variations, one of which is

slightly more sophisticated.

The first and most straightforward way is to output each item and

its sequence immediately after its identification in the input. When the

entire input has been processed, a standard sort/merge can be performed

on this data with a major sort on the item and a minor sort on sequence.

At the completion of the merge, the items will be ordered alphabetically,

and duplicates will be ordered in the sequence of their occurrence in text.

This list can be processed as many times as required to get frequency data

for each interval. Duplicates can be eliminated within each interval at

each stage, reducing the amount of input to the succeeding stage.

A more sophisticated version of this process is to eliminate dupli-.

cate items during the merge process itself. Because of the fact that

about ZOO common words account for about half the words appearing in

narrative English text, this process can reduce the merge time signifi-

cantly. At the completion of the merge, the counting can proceed as in

the first variation.

i

- 24

4. 1. 2 In2ut Iteration

This organization of overall data flow accepts input generated by

an Item Identification module and creates a dictionary of unique items

with their position values and frequencies, until the working storage

area is filled. Any succeeding items appearing in the input but not

appearing in the dictionary are saved on an intermediate storage unit.

The positional values for the "overflow" input items are Dart of the data

included on the temporary storage device. As many intermediate storage

units are used as necessary to contain those input items not contained in

the initial dictionary. At the end of processing the input items, the

initial dictionary is saved on intermediate storage, and the overflow

input items are reprocessed to form one or more additional dictionaries.

At the completion of dictionary generation, these partial dictionaries are

merged to form the final output dictionary of unique items with their

frequency and position values.

In this iterative input processing method of dictionary construction,

one of the problems to be considered is the limitation of storage capacity.

It is possible to overcome some of the storage capacity limitations by

allocating the storage area into various blocked sizes. The size of the

blocks is predetermined based or the probabilistic occurrence of items

by initial character. For example, in narrative text the words beginning

with S are more frequent than words beginning with X and the dictionary

block sizes would reflect this probability.

In this method of dictionary construction, as in. others to be de-

scribed, the type-token distribution of the input text is the principle con-

trolling factor for causing multiple intermediate dictionaries to be created.

The greater the redundancy of types in the input text, the less time,

intermediate storage devices, and sort/merge operations will be required

to process the tokens.

i
i

z56

4. 1. 3 Partial Dictionary Generation

There are several alternative techniques available for organi-

zation of overall data flow by partial dictionary generation. The

variations attempt to improve operational efficiency, by utilizing know-

ledge of certain characteristics of the input text. Three variations of

this technique are briefly described.

The basic version of this technique accepts as input the items

generated by an Item Identification module and the positional sequence

values which have been assigned to each item. A dictionary of these

unique items and their frequencies is generated until the working

storage area is filled. This dictionary is saved on an intermediate stor-

age unit, and the generation of a new dictionary of input items is begun.

This partial dictionary build and save cycle is repeated until all the

input text items have been processed. The partial dictionaries are

merged, eliminating the duplicates, and the final dictionary contains

the unique text items with frequency counts and positional sequence

value s.

This second variation also accepts text items with sequence

values which have been provided by an Item Identification module.

A dictionary of these unique items is generated until the working

storage area is filled. At this time, those items in the storage area

with the lowest frequencies are saved on an intermediate storage unit.

Those items with the highest frequencies are retained in the working

storage area, and additional input items are processed against these

unique items to augment the dictionary. This cycle is repeated until

all the input items have been processed. The resulting partial diction-

aries are merged, eliminating duplicates and retaining the proper fre-
?I

quency counts and sequence values.

This third variation requires analysis of the type of input to be

processed in order to construct an efficient pre-stored dictionary.

The items with positional sequence values from an Item Identification

module are compared against the pre-stored dictionary, and the dictionary

26

is augmented with any new input items until the working storage area

is exhausted. Any of the pre-stored items which have not been found

as an input item are eliminated at this time, and dictionary augmenta-

tion continues. When the working storage area is again filled, a partial

dictionary of those items not occurring in the pre-stored dictionary is

saved on an intermediate storage device. The cycle is repeated until

all the input has been processed. The intermediate dictionaries are

merged, eliminating duplicates and retaining the proper frequency counts

and position values.

4. 1.4 Analysis

Once the above approaches had been identified and described,

an analysis was made to determine their relative effectiveness. The

approach used was to estimate the amount of computer time used by

each of the methods in acquiring an alphabetic list of the words and

their frequencies encountered in a textual sample on which extensive

data was available.

Preliminary analysis showed the Overall Sort/Merge methods

to be non-competitive, so estimates were not obtained for this method.

Based on estimates of machine cycles for compare/input/output units,

the Partial Dictionary Generation methods are slightly superior to the

Input Iteration method. However, the variation in performance between

them is relatively insignificant, and it was decided that the specific

variation chosen should depend on estimates of design and programming

simplicity. The basic data flow will therefore f3llow the Partial Diction-

ary Generation organization, with the final specification awaiting the

completion of the study of dictionary construction techniques.

4.2 DICTIONARY CONSTRUCTION TECHNIQUES

Fundamental to the efficiency of any of the overall data flow

methods described are the techniques for dictionary construction.

27L I

t =fl

Three basic techniques for dictionary construction are being investi-

gated for this study: Straight Chain Method, Binary Search Method,

and Directory-Chain Mcthod. Placing a new item in the dictionary

and searching for an item already in the dictionary require the same

initial process, since before an item can be stored in the dictionary

it is first necessary to determine whether or not it is already pie-ent,

Therefore, these techniques can be described for either search or

store operations with the functions being implicit.

4. Z. I Straight Chain Method

A chain can be used c.s a means of connecting non-contiguous

items of arbitrary size. The primary advantages of the chaining tech-

nique in dictionary searching are: efficient utilization of available

storage, rapid internal processing rate, and ease with which chains

may be altered to revise inter-item relationships without item move-

ment in storage.

The chain method requires a technique for converting the input

item to a storage address. This address begins a chain of table entries,

each containing the address of a dictionary entry. The chain is necessary

Osjnce more thari one entry may be converted to the same address,

while there ma, f-ist addresses to which no entry converts. The method

for generating an address for the input item may be algorithmic, may
make use of an index or may be some combination of the two,

The following example shows how the chain can be generated,

how the final dictionary would look, and how an item would be located.

In this simple example an index is used to convert the first character

of an item to table addresses such that:

A converts to I

C converts to 3

D converts to 5

E converts to 7

2

i 28

Prior to beginning operation, all the other table entries are chained

as available storage. An asterisk (*) is used to indicate the end

of each chain in the table. Assume that sixteen words are to be stored,

and that the range of addresses available is I through 16. The first

word encountered beginning with the letter "A" is stored in the next.
available space in the dictionary, and that dictionary aduress is stored

in table location 1. The table entries for succeeding words beginning

with "A" are selected from the liot of available storage and chained to

the preceding entry.

An input item (say, EAT) is converted bI use of the index to an

initial table entry (in this case, 7). The table is entered (see Figure 4-1)

and the Dictionary Address (477) used to perform a comparison (here,

IF..T with E). If the entries do not compaie, the Next Table Address (14)

is used to select the next table entry to be used, and the process is re-

peated. (In this case, EAT would be compared to EACH before being

located on the third comnparison.) If the input item is not found (i. e. , the

chain ends without a matchl, the end-of-chain code (*) is removed from

that location, the address of an empty locat-on is inserted to add another

link to the chain, and the item is stored at the new location which 4s then

marked as the end of the chain.

The average number of passes through the compare loop needed

tri locate a dictionary entry is:

C-+

2

where: C is the number of compares

G is the average chain length
L

Trhe time required by the compare loop is determined by the nurrmer of

machine words in the entries being compared and by the amount of time

needed to locate the next entry if there was a no-match condition. The

dictionary can be partially pre-established (e.g., most frequent items

.it start of chains), to reduce the number of passes through the com-

pa,-,son loops and yield a more effidcent method.

29

-

TABLE DICTIONARY

TABLE NEXT TABLE DICTIONARY
ADD R ESS ADD RESS ADD RESS ADDRESS TERM

1 480 475 CAT

2 4 485 476 DOG

3 8 483 477 E

4 6 487 478 EVEN

5 11 479 479 D

6 * 490 480 A

7 14 477 481 COW

8 9 475 482 DOT

9 10 481 483 C

10 * 486 484 EAT

11 12 489 485 ALL

12 13 476 486 CUR

13 * 48Z 487 ANY

14 15 488 481 EACH

15 16 484 489 DATE

I

16 478 490 AT,

Figure 4-1. Chaining Tables

30

4. 2.2 Binary Search Method

A second approach to dictionary processing is acemplified by

scanning techniques, in particular the binary search. Scanning tech-

niques compare an input item with each dictionary item one after an-

other until matched. With N records in random order, an average

of (N + 1)/Z items will have to be scanned. If an input item is not in

the dictionary it requires N passes through the compare loop to deter-

mine that it is not there, so that except in trivial cases, sequential

scanning of a dictionary to find a single item takes much too long.

However, the process time for the scanning technique can be

reduced by maintaining the dictionary in sequence, and employing

binary search. If a dictionary of N items is stored in a random -

memory with the items arranged so that their keys are in ascen_. ,

(or descending) order, this technique may be used to locate an item in

a time approximately proportional to log.N. The binary search method

locates an item by isolating the area in which the item should be found

based on the sequence of the item keys. If the location of any one

item is known, the direction of the search is determined by whether

the desired key is higher or lower in sequence. The binary search

technique begins by testing first the key of the item which is at the

midpoint of the current search area. A comparison determ:.nes whether it

is the desired item and, if it is not, the comparison specifies whether the

next search for the desired item should be in the upper or lower half of

the search area. This half is then bisected, and if necessary, 'he quarter

of the area containing the sought item is determined. The >,s- on pro-

cess continues until the item is located. (Figure 4-2 shows an 'lance

of three such comparisons.) If the item is not in the dictionary, movement

of dictionary items becomes necessary to insert the new item, and this is

a time consuming operation. However, the binary search technique is

efficient because at each comparison either the desired item is found or

half of the remaining candidate items are eliminatedfrom further consider-

at ion.

31

II

Figure 4-2. Binary Search

The binary search requires that the items be arranged in in-

creasing (or decreasing) order in consecutive locations of a random

access memory. Although the expected search time for this arrange-

ment is relatively small, the time to alter the dictionary by adding or

deleting items is proportional to N, because many items must be

moved to make space for the new item. The maximum number of

compares needed to locate an item or to determine that the entry is

not in the dictionary block is:

C [ogZN] +1I

where: 1o0j2 indicates the nearest integer

greater than log N°.

321
tt

The average number of passes through the compare loop

needed to locate any item is not much smaller than the maximum

and can be expressed as:

C= /IN I [Zj (j +a2)

j = 0

which is approximately equal to C =og 2 Nj

4. 2. 3 Directory-Chain Method

The directory-chain dictionary search method combines features

of the preceding techniques. There is a significant variation in the

method of selecting the proper table location and chain, and this pro-

cedure reduces the search and compare time considerably. In the

following description of this method, chaining will be pictured as

below:

A__ B C Z1IF B CT

Item A Item C Item B

In this example, Item B occupies a chain position preceded by

Item A and followed by Item C, which terminates this particular chain.

In order to trace through the chain to extract its components in the

proper order, a sequence of instructions is written which may proceed

as follows: Obtain the address of Item A and extract that item. Examine

the chaining position in A; this points to B and extract Item B, at the

same time examining the chaining pointer. This indicates that C is the

S -- 33

next address. After the extraction of Item C. it is observed that thfe

chain pointer is zero; there are therefore no more items in this particular

chain.

For the directory-chain method, the complete table of addresses

used in the straight chain method is replaced by an ordered directory

of chain entry addresses. A binary search is used in the directory

to reach the proper table location, where a pointer to the initial entry

in each chain is maintained. A program parameter, Q, is specified

as the maximum chain length. When the value Q is attained for any

chain, e. g. , chain i, an appropriate subroutine bisects this chain into

subchains of length Q02 and places the proper pointers and count of

entries in locations i and i + I of the directory. Other directory entries

may be pushed down to allow for this expansion if necessary. Thus,

as the number of items in memory increases, the number of entry

points to the chains also increases, and the number of searches within

a chain never exceeds 1 - I. The speed of processing is therefore

relatively independent of the input item distribution. (The "primed"

modification to this method, which will be discussed later, would make

efficient use of the input distribution.)

The following example should serve to clarify the general techni-

que. The problem is to construct a dictionary of N-Q entries, the

first three input items being AFTER, AARDVARK, and ABACUS. The

initial input item is AFTER, and at the end of its processing, the state

of memory and of the directory is:

Directory
C (X= 1, n= 0) Dictionary

AFTER

34

L - -a U W

where: X is the number of chains currently in use in the
directory. Here X =I

n is the power of two used in the binary search,

where 2 <. X < 2". It is initially set to zero.

C is the directory chain pointer. Here it points to

the first (and at this point, only) chain of entries,

beginning at location A.

P is the number of entries in this chain. At all times,

P1<Q.

Y is a free field and might be used to indicate the length
of the entry.

Z is either the address of the next entry in the chain

or end-of-chain indicator.

Let us suppose that AARDVARK is the second item in the input

to be processed. A binary search is conducted using the directory

and it is determined that the proper chain begins at location A. An

inspection of the relative values of the two items establishes the fact
that AARDVARK pre.zedes AFTER. The former is therefore inserted in

the chain prior to AFTER, and in this case, its location, B, is placed

in the directory table to indicate the first item in the chain.

Directory
(X = 1, n= 0) Dictionary

B P 2 Al B A

AFTER AARDVARK

If ABACUS is the third input item, it must be inserted in the chain

between AARDVARK and AFTER. The proper chain is found by a bin-

ary search using the directory, and the word inserted as shown below.

3
I

S = - - - =-=- ---- = -. ~ = .- ~--- - - =-

Directory
(X = 1, n 0) Dictionary

B P=3 A C A
AFTER ±ARDV ABACUS

Eventually a point will be reached where P = 0. In the following diagram,

I indicates the chain linkage to additional entries prior to ANTENNA in

the first chain, and R indicates the chain linkage to additional entries

following ARBITRARY.

Directory
(X 1, n 0) Dictionary

B P Q A I B fA

AFTER AARDVAK ABACUS

L M MI R

ANTENNA ARBITRARY

It is now advisable that the chain be split. Suppose that entry L is in

the 1/2 Qth position in the chain. The directory is expanded in the

following fashion:

Directory
(X = 2, n = I) Dictionary

B 1/ZQ A I B C A

M I/ZQ AFTER AARDVARK ABACUS

I

ANTENNA ARBITRARY

36j

An end-of-chain indicator has been inserted in the chaining portiotn of

entry L, and the entry M has been indicated as the starting point of a

new chain. X is increased by one (X=Z) since there is an additional

entry in the directory, and since X> 2 = 1, n is increased by one

(n = I) for an enlarged binary search.

Let us assume that 1/2 Q additional entries have now been pro-

cessed which fall in the range of values between AARDVARK and

ANTENNA. Suppose furthermore that AMATEUR and AMNESIA are

now the medial ent..ies in the chain headed by AARDVARK, and that

J K, and L exist in the chain somewhere between B and L.
'1

Directory
(X = 2., n =1) Dictionaryv

B 0 I 0

M I/ZQ AFTER AAA1 S ANTE NNA

M R K K L

ARBITRARY AMATEUR AMNESIA

The B chain must again be split since the entry count has

reached Q. Chain and directory adjustments are made.

Directory
(X = 3, n 2) Dictionary

[~B l/ZQ A I B7 L G A 1,
IK 1 1/2Q AFTER kARDVARK LABACUS !ANTENNA

M 1/2Q

Lo! 0 M -71 R Jj 1 Jo K L1 j L'
ARBITRARY LAMATEUR AMNESIA

37

Again X 2 2, and n is incremented by I (n 2) so that Zn 4 fjr the

binary search. Since the entry count for chain M has not reached Q, thr.

table entry is merely pushed down to make room for the expansion ahoyv,

This process is continued until all available memory is in use. If n

expands beyond the boundaries of storage allocated for the directory, the

parameter Q may be increased or an ent-rance to the-.ytput section

may be effected.

There are two types of modifications to the directory-chain

dictionary search technique which could improve the overall dictionary

construction operation. The first modification consists of "priming"

the heads of initial chains with those words whose distribution in the input

is frequent in occurrence. For example, it has been observed in several largt

samples of narrative English text that approximately 350/, of the tokens

(total words) are accounted for by 40 types (unique words). Also, for

the same text samples, it has been noted that Z00 types account for 45$

of the tokens. Thus, if the directory-chain technique was primed with thes(

ZOO words at the heads of the chains for each pass, the processing time

could be reduced significantly. Elimination or replacement of these chain

heads could be easily accomplished either at the start of the processing or

at the end of each pass of the input.

The other modification which could be made is to employ bi-

directional chaining using a floating pointer. As in the other chain techni-

ques, all available memory is utilized to provide the opportunity to process

the greatest number of items at one time, and the first N bits of an item

arc again used to identify the table location pertaining to the proper sub-

group of items,

In bi-directional chaining the following convention will be used:

A • C B 0 B A C
IA

Item A Item C Item B

(!

_I
38i

Here, the chain may be traced in either of two directions, and Item B

occupies an intermediate position relative to Items A and C as terminal

entries on their respective ends of the chain.

To assist the bi-directi~nal chaining a floating pointer is used.

The purpose of this pointer is to decrease the number of inspections

in each chain by pointing to a second location in the chain which is used

3or searching as well as to the beginning of the chain which is used for

reading. On the basis of the relationship between the new entry and the

entry indicated by the floating point, the examination of other items in the

chain may proceed on either of the paths provided by the bi-directional

chaining.

To illustrate bi-directional chaining, suppose a new entry Item

I is obtained such that Item A <Item I <Item B, the following would

be the structure before the processinig of Item I:

Directory Dictionary

Floating Inift A BA C
Pointer Pointer A 0 I

B Ate Item C Item B

and after the processing of Item I:

Directory Dictionary

FP IP BC B C'I A:C

IP AIe A Item C Itm B Item

It is evident that the pointer in A has been altered to include Item 1, as

has the pointer in B. Similarly, I now contains pointers to both A and

B.

39
P a-

II

If the floating pointer is treated as a mid-point position, the

sub-group chain is effectively cut in half. For a random distribution,

ihis method eliminates the need for approximately 50% of the inspections

required in the straight chain method, and for an updating operation a

time-saving of approximately 50% is also realized. However, for a file

or group inversion operation there is a disadvantage to the technique

as compared to the straight chain method. A possible solution to this

would be the utilization of the initial pointer to ascertain the more favor-

able inspection point. This would increase slightly the operational

time for other types of distribution where the floating pointer is the

more favorable entrance point to the chair, but a general tirre-saving

is realized in the former case.

For actual word distributions in text, a better use of the floating

pointer can be made. This better usage is achieved when the pointer

is not restricted to the median position but is allowed to float in the

direction of chain additions. For a random distribution of items, this

technique is essentially similar to the above floating pointer method;

however, for either a file inversion or an up-dating operation, a saving

in operational time is achieved since the floating pointer will tend to

anticipate the direction of the chain motion. This method represents the

best version of the chaining technique studied so far.

A further potential improvement consists of breaking chains at

the mid-points of the distributions of items in the chains rather than at

the mid-points of the chains themselves. This should tend to concen-

trate the frequent words in short chains while infrequent words remain

in longer chains. It, of course, requires more bookkeeping and may

not prove to be advantageons.

Further work will be done on these methods prior to a selection

being made for purposes of program design work. The final choice will

depend not only on the theoretical efficiency of the method but also on the

actual machine cylces used in the inner loop and the ease of coding and

maintaining it.

40

Section 5

GLOSSARY

This Glossary is intended to serve as an aid to understanding

some of the spt "alized terminology used in this report.

character a decimal digit zero to nine, or a letter A to Z,

either capital or lower case, a punctuation symbol,

a blank or any other symbol, which a machine may

read, store, or write.

delimiters a specified set of characters, a member or members

of wvhich determine the boundaries of an item.

item a continuous sequence of one or more characters;

for example, in defining a word an item is bounded

by delimiters; for a n-gram an item is determined by

length.

item token the occurrence(s) of a unique item (type) in the input

data; the type "for" had a token occurrence of six times.

item type a unique item which could occur in thc input data; types

could be "for", "Tom", "with", etc.

key the primary identifier o an item such as initial character

or character group, by which that item can be identified

or searche-d.

module the set of instructions necessary to direct the computer

to execute a well defined mathematical or logical opera-

tion; a subunit of the basic program.

tag a unit ot infornation, whose composition or),cation

differs from that of oth r members of the data set so

that it can be used as a marker or label.

4

word pair two sequential words (items) separated by one or more

delimiters; in the three word phrase "solid logic

p technology", word pairs are "solid logid'and "logic

technology".

4Z

II

..

i

SUPPLEMENTARY

INFORMATION

?bOT? Or CHAWPZ Di CLASSIFICATION,
DISTRIBUT¶ION AND AVAILABLITY

69-48 15 UP1U4DE 1969

AD-1185 188 No }'orciCn without No limitaticflOnl D/11 Iti',

IBIA Federal Syztc:a.-. approval of Office 1~8 Jun 69

Div., Galthersburrg, of Naval Research,

Md.* Attn: Infor~natiofl
Annual pro~rCss rept. Scystcm: Branch,
Apr 6 6 Vashincton, 1.C.

Contract Nonr-411c%(OC)

8est Available Copy

